Investigating the ion dependence of the first unfolding step of GTPase-Associating Center ribosomal RNA.
نویسندگان
چکیده
The interactions in the tertiary structure of a ribosomal RNA fragment in the GTPase Associating Center (GAC) have been experimentally studied, but the roles of the bound and diffuse cations in its folding pathway have not yet been fully elucidated. Melting experiments have shown that the temperature of the first of the two distinguishable transitions in the unfolding pathway of the GAC RNA can be regulated by altering the magnesium concentration, yet the physical interpretation of such ion-dependent effects on folding have not been clearly understood in spite of the availability of crystal structures that depict many GAC RNA-ion interactions. Here, we use umbrella sampling and molecular dynamics (MD) simulations to provide a physical description for the first transition in this unfolding pathway, with a focus on the role of a chelated magnesium ion. Our results indicate that the presence of cations mediating the local interaction of two loops stabilizes the folded state relative to the unfolded or partially folded states. Also, our findings suggest that a bridging magnesium ion between the two loops improves the stabilizing effect. This is consistent with the multistep unfolding pathway proposed for the GAC RNA and highlights the importance of ions in the first unfolding step. The results suggest how MD simulations can provide insight into RNA unfolding pathways as a complementary approach to experiments.
منابع مشابه
Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.
Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation...
متن کاملDown regulation of GTPase regulator associated with the focal adhesion kinase (GRAF) gene expression in patients with acute myeloblastic leukemia
Introduction: GTPase regulator associated with focal adhesion kinase (GRAF) is a recently identified GTPase activating protein that has the tumor suppressor properties. However, the expression level of GRAF in leukemia had received less attention. The main purpose of this research was the evaluating of the expression level of GRAF in patients with acute myeloid leukemia (AML). Materials and met...
متن کاملThiostrepton inhibition of tRNA delivery to the ribosome.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential fo...
متن کاملComputational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, anothe...
متن کاملThe RNA-binding domain of ribosomal protein L11 recognizes an rRNA tertiary structure stabilized by both thiostrepton and magnesium ion.
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the 'GTPase center' of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomolecular structure & dynamics
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2018